4. Determine the bending moment diagram of the structure assuming that A-C is a circular segment! (5 + 5 points)

Data:

<i>p</i> [<i>kN</i> / <i>m</i>]	a [m]	<i>b</i> [<i>m</i>]

Results:

The data marked by grey colour should be given as a signed value. Positive support reactions: $\uparrow \rightarrow \curvearrowright$.

₩ M

 \oplus

support reactions. -> -:				
$A_x [kN]$	$A_{y}[kN]$	$B_{\chi} [kN]$	$B_{y}[kN]$	
R [m]	$h_{P1}\left[m ight]$	$h_{P2} [m]$		
M_{P1} [kNm]	<i>M</i> _{P2} [kNm]	<i>M</i> _{P3} [kNm]	b_{C-P_3} [kNm]	

Free-body diagram:

5. Determine the internal force diagrams of the following structure if its shape is the graph of the function y=bx² (parabola)! The heights of the points from axis x are denoted by h_1 , h_2 , h_3 , the angles between the tangents of the parabola and axis x are denoted by α_1 , α_2 , α_3 (see the figure below). The force in the tie rod is denoted by S. The heights are required in centimeters! (10 + 10 points)

Help:

The height of the structure h is not given, but it can be calculated from the given function.

The bending moment does not depend on the direction of axis; hence it can be calculated in the usual way.

To calculate N and V, first, we should calculate the angle between the tangent of the parabola and axis x: N is parallel, and V is perpendicular to the tangent. The angle can be determined using that the slope of the tangent is the derivative of the given function.

Data:

F[kN]	a [m]	b

Results:

The data marked by grey colour should be given as a signed value. Positive support reactions: $\uparrow \rightarrow \uparrow$.

		•
÷	÷Ę.	,

$h_1[cm]$	$h_2 [cm]$	h ₃ [cm]	h [cm]	S [kN]
11 3	21 3			
<i>α</i> ₁ [°]	<i>α</i> ₂ [°]	<i>α</i> ₃ [°]	<i>α_B</i> [°]	
M_1 [kNm]	<i>M</i> ₂ [kNm]	<i>M</i> ₃ [kNm]		
$V_C^j[kN]$	$V_2^b [kN]$	$V_2^j [kN]$	$V_B[kN]$	
$N_C^j [kN]$	$N_2^b [kN]$	$N_2^j [kN]$	$N_B [kN]$	

Superscript 'b' and 'j' refer to the left and right sides of a point, respectively.

