4. Determine the bending moment diagram of the structure assuming that A-C is a circular segment! (5+5 points)

Data:

$p[\mathrm{kN} / \mathrm{m}]$	$a[\mathrm{~m}]$	$b[\mathrm{~m}]$

Results:
The data marked by grey colour should be given as a signed value. Positive

$A_{x}[k N]$	$A_{y}[k N]$	$B_{x}[k N]$	$B_{y}[k N]$
$R[m]$	$h_{P 1}[m]$	$h_{P 2}[m]$	
$M_{P 1}[\mathrm{kNm}]$	$M_{P 2}[\mathrm{kNm}]$	$M_{P 3}[\mathrm{kNm}]$	$b_{C-P_{3}}[\mathrm{kNm}]$

Free-body diagram:

5. Determine the internal force diagrams of the following structure if its shape is the graph of the function $y=b x^{2}$ (parabola)! The heights of the points from axis x are denoted by h_{1}, h_{2}, h_{3}, the angles between the tangents of the parabola and axis x are denoted by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ (see the figure below). The force in the tie rod is denoted by S. The heights are required in centimeters! ($10+10$ points)

Help:
The height of the structure h is not given, but it can be calculated from the given function.

The bending moment does not depend on the direction of axis; hence it can be calculated in the usual way.

To calculate N and V, first, we should calculate the angle between the tangent of the parabola and axis x : N is parallel, and V is perpendicular to the tangent. The angle can be determined using that the slope of the tangent is the derivative of the given function.

Data:

$F[k N]$	$a[\mathrm{~m}]$	b

Results:
The data marked by grey colour should be given as a signed value. Positive support reactions: $\uparrow \rightarrow \curvearrowright$.

$h_{1}[\mathrm{~cm}]$	$h_{2}[\mathrm{~cm}]$	$h_{3}[\mathrm{~cm}]$	$h[\mathrm{~cm}]$	$S[k N]$
$\alpha_{1}\left[{ }^{\circ}\right]$	$\alpha_{2}{ }^{\circ}{ }^{\circ}$	$\alpha_{3}\left[{ }^{\circ}\right]$	$\left.\alpha_{B}{ }^{\circ}\right]$	
$M_{1}[\mathrm{kNm}]$	$M_{2}[\mathrm{kNm}]$	$M_{3}[\mathrm{kNm}]$		
$V_{C}^{j}[k N]$	$V_{2}^{b}[k N]$	$V_{2}^{j}[k N]$	$V_{B}[k N]$	
$N_{C}^{j}[k N]$	$N_{2}^{b}[k N]$	$N_{2}^{j}[k N]$	$N_{B}[k N]$	

Superscript ' b ' and ' i ' refer to the left and right sides of a point, respectively.

(V)

(M)

